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Abstract

Zinc is a trace metal ion that has a role in both physiological and pathological pro-
cesses, making it one of the most common and necessary components involved in brain 
function. Besides, zinc is required for cell proliferation control in a variety of mecha-
nisms, including hormonal regulation of cell division. Also, zinc serves as a biochemical 
signal to immune cells and transcription factors involved in the synthesis of inflamma-
tory cytokines. On the other hand, zinc has a variety of crucial roles in neurogenesis and 
also acts as a neuromodulator on a wide range of membrane receptors, ion channels, and 
transporters. Zinc is produced by neurons under several conditions to activate microglia. 
The link between zinc dysregulation and psychiatric disorder was that zinc acts as an 
inhibitory modulator at the N-methyl-D aspartic acid (NMDA) glutamate receptor. 
Ionophores are ion carrier molecules that reversibly bind and transport ions through 
biological membranes. Ionophores can be natural or synthetic products. Zinc ionophores 
such as quercetin, epigallocatechin gallate (EGCG), hinokitol, and proanthocyanidins 
have been shown to protect brain health, particularly in depression clinically significant 
depression and depressive symptoms in post-COVID-19 syndrome may have severe 
implications as it relates to life outcomes quality, herein according to previous research 
studies, we showed zinc deficiency as a possible risk factor for depression symptoms, 
which were commonly observed following severe infection of COVID-19.

Keywords: ionophore, zinc, cytokines, quercetin, EGCG, hinokitol, proanthocyanidins

1. Introduction

Zinc is a trace metal ion that has a role in both physiological and pathological 
processes, making it one of the most common and necessary components involved in 
brain function. The cortex, amygdala, olfactory bulb, and hippocampus neurons all 
carry “free ionic zinc” (Zn2+), which appears to have the largest concentration of zinc 
in the brain. Zinc is involved in the physiochemical function of enzymes, proteins, 
and signal transcription factors, as well as the maintenance of numerous homeostatic 
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systems, functioning as structural, regulatory, and catalytic cofactors for enzymes 
including DNA and RNA polymerases, histone deacetylases, and DNA ligases. Zinc is 
also required for cell proliferation and genomic integrity [1–5].

As a neuromodulator, zinc is produced during synaptic transmission and attaches to 
presynaptic or postsynaptic membrane receptors, allowing it to translocate from presyn-
aptic terminals to postsynaptic neurons [6, 7]. Zinc can be found in glutamatergic neurons’ 
synaptic vesicles. Zinc is therefore liberated from glutamatergic synaptic vesicles and 
then interacts with excitatory and inhibitory amino acid receptors (N-methyl-D aspartic 
acid (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and 
γ-aminobutyric acid (GABA) [8–10]. Because of its actions on numerous voltage-gated ion 
channels, extracellular Zn2+ can modify the excitability of nerve cells [11–13].

Besides, zinc is required for cell proliferation control in a variety of mechanisms, 
including hormonal regulation of cell division. Also, zinc serves as a biochemical signal 
to immune cells and transcription factors involved in the synthesis of inflammatory 
cytokines. Zinc supplementation has been proven in trials to reduce rates of infection 
and proinflammatory cytokine secretion. Zinc also possesses metal-binding charac-
teristics and is widely recognized for its antioxidant qualities [14, 15]. Zinc deficiency 
causes apoptosis in neurons via the mitochondrial pathway [16, 17]. Zinc has just lately 
been discovered to have a role in intracellular signaling as a second messenger. It is also 
used by immune cells as a molecular signal. Zinc controls a variety of transcription fac-
tors that control gene expression and are engaged in the signal transduction of inflam-
matory cytokines and adhesion molecules. Zinc helps to preserve genomic stability by 
regulating redox homeostasis, DNA repair, synthesis, and methylation [18, 19].

2. Role of zinc in the brain

2.1 Role of zinc in neurogenesis and synaptic transmission

Zinc has a variety of crucial roles in neurogenesis [4]. Zinc deficiency decreases 
the neurogenesis process and impairs the expression of genes involved in hippocam-
pus proliferation and neuronal development in the postnatal rat cerebellum [20]. 
Further, zinc deficiency reduces the proliferation of the human neuroblastoma cell 
line, promotes apoptosis, and inhibits retinoic-acid-induced neuronal development in 
cultured cells [1, 21].

Of note, zinc is found in the presynaptic glutamatergic vesicles across the 
brain, including the cerebral cortex, limbic system, hippocampus, and olfactory 
bulb [22].

It acts as a neuromodulator on a wide range of membrane receptors, ion channels, 
and transporters [23]. Synaptic zinc, in particular, is enhanced via a specialized zinc 
transporter, ZnT3, and is coreleased with glutamate during action potential-induced 
exocytosis [24]. These also have an impact on synaptic transmission, which interacts 
with receptors and channels that regulate auditory processing [25, 26]. Synaptic zinc has 
been discovered to inhibit NMDA receptors, GABA-A receptors, and calcium channels 
while activating AMPA and glycine receptors [27–30]. Zinc also has vital effects on other 
kinds of receptors, including serotonin, dopamine, and acetylcholine receptors, as well 
as voltage-gated ion channels for sodium, potassium, calcium, and chlorine [29, 31].

Synaptic zinc regulates sensory processing and improves acuity in the discrimina-
tion of different sensory stimuli. Synaptic zinc plasticity leads to prolonged adapta-
tions and sense memories. Recently, the mechanism of this long-term synaptic 
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zinc plasticity has been described as being due to group 1 metabotropic glutamate 
receptors (G1 mGluRs)-dependent mechanism that triggers a bidirectional long-term 
change in synaptic zinc signaling [32].

2.2 Role of zinc at depression

No one denies that depression treatment is a gateway to overcoming many social 
and psychological problems that affect millions of people all over the world. Many 
factors play a role in depressive-like behaviors, such as impairment of functions of the 
hippocampus and the prefrontal cortex. These brain parts play an important role in 
decision-making processes, so any dysfunction at this area can induce a predisposition 
to negative feelings, and many glucocorticoid receptors are involved in these areas [33].

In terms of both pharmacological and clinical/epidemiological data, recent years have 
provided additional evidence confirming the role of zinc in depression. Zinc demon-
strated antidepressant-like efficacy in preclinical studies and depressive models. Clinical 
evidence suggested that zinc supplementation might be beneficial in people suffering 
from depression. Zinc supplementation has been demonstrated to be beneficial as adju-
vant therapy or as a stand-alone intervention for depression. Furthermore, zinc consump-
tion has been linked to an increased risk of depression. Dietary zinc restriction was found 
to be a causal factor in the development of depressive-like symptoms or anhedonia in 
mouse studies [34]. Some epidemiological studies have reported that reduced nutritional 
zinc consumption is related to depression in females but not in males [35]. Even though 
the first prospective study examining the relationship between zinc intake and depression 
risk found a small but significant inverse correlation between them, a 20-year follow-up 
study found that a reduced dietary zinc intake protects from depression in men who were 
not previously depressed. However, because the research participants were all men with 
a hospital discharge diagnosis of unipolar depression, the findings cannot be applied to 
women or patients who did not require hospitalization. On the contrary, a reduced nutri-
tional zinc intake was found to be a risk factor for depression in a prospective analysis of 
both men and women [36]. Mice missing the G-protein-coupled receptor 39 (GPR39), a 
zinc-activated receptor, show depressive-like behavior [37]. TC-G-1008, a GPR39 agonist, 
was recently discovered to have antidepressant-like effects [38]. These findings add to the 
growing body of evidence that zinc is useful in the treatment of depression.

Meta-analyses support the use of zinc as a supplement in the treatment of severe 
depression, and single research currently supports the use of zinc for psychotic symp-
toms [39]. Zinc deficiency has also been linked to neuropsychiatric symptoms such as 
altered behavior and cognition, learning difficulties, and depression [40–42].

The link between zinc dysregulation and psychiatric disorder was that zinc acts as 
an inhibitory modulator at the NMDA glutamate receptor [43–45]. In addition, the 
inhibitory effects on the nicotinic acetylcholine receptor (nAChR), GSK3 (glycogen 
synthase kinase 3beta), and NOS (nitric oxide synthase) are also relevant to depres-
sive processes [46, 47].

Numerous studies show lower zinc blood levels in depressed people compared 
with healthy people, with a meta-analysis showing depressive symptomatology 
at zinc serum levels of 1.8 M or below [48]. In several investigations, zinc supple-
mentation enhanced mood in those who were suffering from treatment-resistant 
depression [41, 49].

Zinc’s effect on the brain-derived neurotrophic factor (BDNF), a growth factor 
that promotes neurogenesis and differentiation, may be connected to depression. 
The hippocampus is a center of lifelong neurogenesis, and periods of significant 
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depression are associated with reduced BDNF expression and neuro/synaptogenesis. 
Rodents on a zinc-deficient diet had lower zinc levels in the hippocampus vesicles, a 
part of the brain where zinc levels are generally greater, as well as lower amounts of 
progenitor cells and immature neurons. Zinc-rich diets, on the other hand, increased 
amounts of progenitor cells [3, 41]. The GPR39 receptor is most likely a critical 
connection in the interaction between zinc and the serotonergic system, which is 
required for antidepressants that affect the serotonin pathway to work [34].

2.3 Zinc and neuroimmunity

Of note, laboratory animal models showed that zinc insufficiency induces thymus and 
lymphoid tissue atrophy. It lowers the number of spleen cells and the sensitivity to anti-
gens that are both T-cell-dependent and -independent [50]. Microglia is a kind of immune 
cell found in the central nervous system (CNS) [51]. The link between zinc and microglial 
activation reflects an undiscovered process that may play a role in neuropathy. However, 
zinc is produced by neurons under several conditions to activate microglial [52].

3. Zinc ionophores

Ionophores are ion carrier molecules that reversibly bind and transport ions 
through biological membranes. Many ionophores are lipid-soluble ion transporters 
that traverse the cell membrane. Ionophores accelerate ion transport through hydro-
phobic membranes such as liquid polymeric membranes (carrier-based ion-selective 
electrodes), lipid bilayers in live cells, or synthetic vesicles (liposomes). A hydrophilic 
core and a hydrophobic section interact with the membrane in the structure of an 
ionophore [53]. Many microorganisms, fungi, and plants naturally manufacture iono-
phores, which import ions into their cells and function as a defense against competing 
or harmful species. Ionophores made from synthetic materials have also been devel-
oped. Ionophores that select for cations and anions have a wide range of uses in the 
analysis [54]. When paired with the ion they bind, these chemicals have been proven 
to have a variety of biological effects as well as a synergistic impact [55]. Ionophores 
change the permeability of biological membranes in the direction of certain ions for 
which they have affinity and selectivity (Figure 1). An ionophore has a hydrophilic 
core and a hydrophobic section that interacts with the membrane in terms of structure. 
An ionophore-ion complex is formed when ions are bound to the hydrophilic center. 
X-ray crystallography has confirmed the structure of the ionophore-ion complex [58].

Zinc ionophores (Table 1; Figure 2) have been shown to inhibit replication of 
various viruses in vitro, including coxsackievirus [63, 65], equine arteritis virus [68], 
coronavirus [68], HCV [69], HSV [70], HCoV-229E [71], HIV [72, 73], mengovirus 

[63, 65], MERS-CoV [71], rhinovirus [65], SARS-CoV-1 [68], and Zika virus [74].

3.1  Examples of zinc ionophores and their role in brain health, depression as an 
example

3.1.1 Quercetin

Quercetin has attracted the attention of many researchers because of its capacity 
to pass the blood–brain barrier. It appears in the brain after hours of administration 
and plays a key function in the central nervous system [75]. Discoveries from animal 
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model research reported that antioxidant, anti-inflammatory, and neuroprotective 
effects of quercetin keep neurons in healthy condition by inhibiting the formation of 
hydroperoxide, reducing free radicals, and restoring antioxidant enzymes. Further, 
the study of quercetin at rat models proves its antidepressant action [76, 77]. Also, 
quercetin can reduce stress and depressive-like symptoms [75].

3.1.2 Epigallocatechin gallate (EGCG)

EGCG may act as a new antidepressant by inhibiting neuroinflammation, which 
may help to alleviate depression. Models of chronic unexpected mild stress (CUMS) 
in rats have been created in experimental investigations of depression [78]. Although 
the etiology of depression is not well understood, one popular theory is that depressed 

Figure 1. 
Zinc ionophores mechanism in penetrating cell membranes. Two ionophore molecules can mediate intracellular 
zinc accumulation by exchanging extracellular Zn2+ with 2H+ [56]. Then, ionophore-zinc complex is taken up by 
endocytosis, followed by lysosomal disruption to release zinc into the cytoplasm [57].

Zinc Ionophore Sources References

Calcimycin Streptomyces chartreusensis [59, 60]

Chloroquine Cinchona officinalis [61]

Clioquinol Synthetic ionophore [55]

Diiodohydroxyquinoline Synthetic ionophore [62]

Dithiocarbamates Synthetic ionophore [63]

EGCG Camellia sinensis (tea plant), apples, plums, onions [64]

Hinokitiol Cupressaceae species [65]

Proanthocyanidins Grape seed [66]

PBT2 Synthetic analog of 8-hydroxyquinoline [67]

Pyrithione Allium stipitatum [65]

Quercetin Vegetables, fruits, berries, herbs, trees, and other plants [64]

Zincophorin Streptomyces griseus [55]

Table 1. 
Nature and synthetic zinc ionophores.
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people have greater amounts of cytokines such as IL-6 due to lower levels of amines 
such as serotonin, noradrenaline, and dopamine [79]. EGCG injection improved 
depressed behavior in rats by reducing Il-6 levels in the hippocampus. As a result, 
EGCG was suggested to be used as a new antidepressant to reduce neuroinflamma-
tion, which could help to alleviate depression [80].

3.1.3 Hinokitol

Hinokitiol (β-thujaplicin) is a monoterpenoid that occurs naturally in the wood 
of Cupressaceae plants. It is a natural zinc ionophore that is safe to use. Because of its 
powerful, broad-spectrum antiviral, antibacterial, antifungal, anti-inflammatory, 
and anticancer effects, it is frequently employed in oral care and medicinal products. 
It is also a food additive that does not build up in the body. Throughout years of use, 
there have been no reports of allergic, poisonous, or adverse consequences in the 
literature. Hinokitiol is a safe zinc ionophore that increases the intracellular pool of 
labile zinc by facilitating zinc influx into cells [81].

3.1.4 Proanthocyanidins

Proanthocyanidins (GSPs), which comprise dimers, trimers, oligomers, and 
oligomers of catechin and epicatechin, are known to have antidepressant properties. 
Recent research has demonstrated the mechanism of GSPs’ antidepressant effects in 
female juvenile prenatally stressed offspring rats. The main pathway was that GSPs 
work synergistically to inhibit oxidative stress and inflammatory response activator 
proteins [66].

4. Cross talk between zinc deficiency and depression caused by COVID-19

High rates of neuropsychiatric symptoms (e.g., depression) have been observed 
among patients affected by COVID-19, suggesting an effect of COVID-19 on the human 
central nervous system (CNS) [82–85]. It was showed globally that depression is a lead-
ing cause of disability [86]. Accordingly, clinically significant depression and  

Figure 2. 
Natural zinc ionophores and their sources. Chemical structures of ionophores obtained from Pubchem database 
(Hinokitiol, CID: 3611; quercetin, CID: 5280343; EGCG, CID: 65064; Proanthocyanidin, CID: 108065).
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depressive symptoms in post-COVID-19 syndrome may have severe implications as it 
relates to life outcomes quality [86]. Herein according to previous research studies, we 
showed zinc deficiency as a possible risk factor for depression symptoms, which were 
commonly observed following severe infection of COVID-19. A meta-analysis of 17 
observational studies found that blood Zn2+ concentrations were lower in depressed 
subjects than in control subjects [48]. Interestingly, a recent study showed that a 
significant number of patients with COVID-19 were zinc-deficient [87], and a higher 
number of zinc-deficient COVID-19 patients had prolonged hospital stay when com-
pared with those with normal zinc levels and required intensive care unit (ICU) [87]. A 
significant positive correlation was observed between the prevalence of zinc deficiency 
and COVID-19 cases [88]. A pooled analysis of 1532 COVID-19 patients suggested that 
zinc deficiency was associated with a sixfold increased risk of severe disease and 16-fold 
increased risk of death via elevating LDH [89] The elevated LDH in the present study 
was probably indicative of severe disease [87].Because zinc has a critical role in regulat-
ing functions of the human brain, many disorders have been linked with Zn2+ deficiency, 
including neurological diseases, such as psychiatric disorders, (depression) [48, 89] 
and schizophrenia [90]. Consequently, the clinical picture, which is common in severe 
COVID-19 patients and is referred to as “Depression” [82–85], is nothing more than 
depression seen in zinc deficiency [48, 87–89]. Most likely, depression and other mental 
problems in these patients also develop due to zinc deficiency in nerve cells in the brain.

The first study revealing a relationship between depression and dietary zinc 
deficiency was conducted by Amani et al. [90]. This study included 23 young 
females diagnosed with moderate and severe depression and 23 healthy volunteers 
who were age-matched. The findings revealed that the depressive group’s daily 
zinc consumption and serum zinc concentration were both lower than the healthy 
women’s. Moreover, an inverse correlation between serum zinc concentration and the 
depression scores was obtained [90]. According to the World Health Organization 
(WHO), zinc deficiency affects at least one-third of the world’s population [91]. The 
fact that zinc deficiency is linked to the risk of infection and severe advancement of 
COVID-19 [91] gives a first significant clue on a link between zinc deficiency and the 
risk of infection as well as its symptoms with unknown etiology such as depression 
and suggests possible benefits of zinc supplementation. Owing to Zn2+ neuroprotec-
tive properties, it is not surprising that Zn2+ supplementation could be effective not 
only on COVID-19-related symptoms but also on virus replication, as well as on 
COVID-19-related inflammation and neurological damage [92]. In vitro, Zn2+ inhibits 
Coronavirus and Arter virus RNA polymerase activity, and zinc ionophores prevent 
these viruses from replicating in cell culture [93]. Zinc ionophore may play a role in 
therapeutic management for COVID-19 [94].

5. Conclusions

Zinc deficiency has been linked to different nervous system disorders. Because 
zinc is not fat-soluble, it requires transporters called zinc ionophores, which facilitate 
the entrance of zinc in cytoplasm increasing its level of concentration in the body 
after consumption. The role of zinc in protecting brain cells has been extensively 
studied recently particularly in depression treatment. Therefore, natural zinc iono-
phores plus zinc supplements, which are commercially available, could be a new way 
to treatment of many neuropsychiatric disorders. Zinc ionophore may play a role in 
therapeutic management for COVID-19 and postcovid-19 depression.
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